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A B S T R A C T

Targeted sampling is an increasingly popular method of data collection in animal-based

epidemiologic studies. This sampling approach allows the user to exclusively choose

samples from subpopulations that have a higher likelihood of the disease of interest. This

is achieved by selecting animals from a subpopulation that exhibits some characteristic

that indicates a higher probability of the presence of the disease. Inferences drawn from a

targeted sample require information regarding the epidemiology of the disease under

surveillance, which is generally not known with certainty. This study describes estimators

for both the detection of disease and the estimation of prevalence when targeted sampling

is employed. Modifications of these estimators are provided that account for the

uncertainty in the parameters that describe the epidemiology of the disease. Results of a

simulation study are provided to illustrate the effect of the uncertainty in these

parameters.
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1. Introduction

Targeted sampling is an increasingly popular approach
for surveillance applications where the prevalence of a
disease is low (Christensen and Gardner, 2000; OIE, 2006;
Tavornpanich et al., 2006; Prattley et al., 2007a,b). An
advantage of targeted sampling is that samples can be
collected from a small number of subpopulations while
ignoring other subpopulations altogether. These subpo-
pulations are defined by observable characteristics that
indicate a different probability of the presence of disease.
Targeted sampling has become a topic of considerable
interest because its use often results in a substantial
reduction in the sample size required to detect a disease
with known confidence when the prevalence exceeds
some predetermined threshold.
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Two key aspects differentiate targeted sampling from
other common sampling approaches, such as stratified
sampling and multi-stage or multi-phase sampling designs
(e.g., Cochran, 1977; Cameron and Baldock, 1998); (1)
samples can be drawn exclusively from the targeted
subpopulation(s) rather than all subpopulations, and (2)
the inferences drawn from a sample rely on knowledge
about the epidemiology of the disease, rather than
auxiliary information that would traditionally be known
as part of the sampling frame or estimated by a sample
drawn from the same population.

Targeted sampling applications assign a point value to
each animal that is sampled (Cannon, 2002). The point
value for each animal is based on epidemiologic char-
acteristics. An interpretation of the point value is that the
number of points assigned to an animal from a targeted
subpopulation represents the number of animals, ran-
domly selected from the entire population, in order to
achieve an equivalent inference.

This study shows that inferences from a targeted
sample require knowledge of two epidemiologic para-
meters; the risk ratio associated with the characteristic
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2 Disease is arbitrarily chosen as the condition of interest. This

development could equally apply to infection, carrier status or some other

case definition.
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and the proportion of the population that exhibits the
characteristic. Nevertheless, these parameters are gener-
ally unknown values and cannot be directly estimated for
the population because the disease either does not exist in
the population or it exists at such a low level that collection
of sufficient data would be impractical. Instead, these
values are often determined from studies performed on
similar populations or the uncertainty is characterized by
expert opinion. Regardless of the source of information,
inferences drawn from a sample must account for the
uncertainty in these epidemiologic parameters.

The goal of this study is to provide a theoretical and
practical description of targeted sampling. Disease surveil-
lance systems are designed to either detect disease within a
population (conditioned on its existence at some prede-
termined level) or to estimate disease prevalence within the
population. During the surveillance design phase, determi-
nation of the sample size to achieve these objectives follows
necessarily different, but readily available, algorithms
(Cannon, 2002). Typically sampling to detect disease
requires a smaller number of samples than sampling to
estimate prevalence with a reasonable level of precision. The
sample size algorithms require some assumption, a priori,
about the occurrence of disease in the population. Despite
the initial differences during surveillance design, however,
the objectives of the two approaches can often switch during
the data analysis phase. Once sample results are available, a
sample that was intended to detect disease can be used to
estimate prevalence in the population (particularly if one or
more samples are found to be from diseased subjects);
furthermore, if a sample was designed to estimate
prevalence but finds no diseased subjects, the results can
be used to determine the confidence in detecting disease for
a putative prevalence level. Therefore, application of
targeted sampling must consider the design and analysis
of surveillance systems for both of these objectives. Because
many surveillance programs are primarily established to
detect disease, the applications in this study will assume
that sample size is initially determined based on sampling to
detect algorithms. Regardless of the size of the sample or
purpose of sampling, however, methodology for estimating
prevalence from targeted sampling is also needed.

In this study methods are developed to determine the
point value to assign to each animal, as well as the
necessary sample size for detection applications. Estima-
tors of population disease prevalence are evaluated. These
topics are first addressed when perfect information
regarding the epidemiology of the disease is available,
then modifications that account for uncertainty in the
epidemiologic parameters are provided. Finally, a simula-
tion study illustrates some of the potential advantages and
pitfalls of the targeted sampling approach compared to
simple random sampling.

2. Outline of the targeted sampling approach

2.1. Background information and definition of epidemiologic

parameters

Assume there is a large population of N animals. For
example, N might be the 10 million sheep in the US. There
is interest in demonstrating, with a high degree of
confidence, that the prevalence of a disease in the
population is less than some predetermined level. This
prevalence, P, is the design prevalence, which is a user-
defined threshold that plays a key role in determining the
sample size required to detect the disease. To demonstrate
that the prevalence of the disease in a population is less
than P requires determining the number of samples, n, so
that if all of the samples are negative, one can conclude
that the level of disease is below the predetermined level
with a pre-specified level of confidence, which is usually
1 � a = 0.95 or 0.99 (i.e., if the prevalence of the disease is
P, the probability that one or more diseased animals will be
sampled is 1 � a). This is done using the following logic.
The probability of sampling a healthy animal at random is
p(the animal is healthy) = (1 � P). Given that N� n, this
result can be extended to a random sample of n animals so
that p (all sampled animals are healthy) � (1 � P)n.

Then

pð1 or more diseased animals are sampledÞ
¼ 1� pðall sampled animals are healthyÞ
� 1� ð1� PÞn:

Setting

1� a ¼ 1� ð1� PÞn

and solving for n gives

n ¼ ln a
lnð1� PÞ :

This provides the necessary sample size to conclude
that the level of disease is less than P with confidence level
1 � a.

The fundamental idea of targeted sampling is that it
is possible to sample a subpopulation with an increased
prevalence and reduce the required sample size. Suppose
an objective characteristic exists for the disease.2 Let T

be the symbol for the characteristic and animals with the
characteristic are more likely to have the disease. An
example of a characteristic could be the face color of
sheep for predicting the presence of scrapie (NAHMS,
2003 found that black-faced sheep have a much higher
probability of scrapie infection than white-faced sheep).
Those individuals not possessing the characteristic are
denoted by O. For the purpose of developing the
methodology, assume the prevalence of the disease in
the general population and the design prevalence are
equal. In this example, there are just two subpopulations
of interest (i.e., those individuals with and without the
characteristic) and the prevalence levels in the two
subpopulations are PT and PO, which will be referred to
as the prevalence within the targeted and non-targeted
subpopulations, respectively. The relationship between
these prevalence levels is PT > P > PO, so the probability
that a sampled individual has the disease depends on the
subpopulation from which it was selected. If a random
sample of animals is drawn from the targeted



Fig. 1. Agreement between the point values (g) derived from an

application of sampling for detection versus the point values necessary

for unbiased prevalence estimation. The range of possible prevalence

levels ranges from nearly 0 to 0.5.
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subpopulation there will exist an integer-valued sample
size nT < n such that

1� a ¼ 1� ð1� PÞnffi1� ð1� PTÞnT (1)

Making inferences from a targeted sample requires
knowledge of epidemiologic parameters that describe
the disease. These parameters are used to relate the
prevalence in the general and targeted populations. The
first parameter is the risk ratio associated with T and is
defined as

RR ¼ PðdiseasedjTÞ
PðdiseasedjOÞ ¼

PT

PO
(2)

where RR > 1 for the targeted subpopulation. It is assumed
that this value is objectively determined (e.g., research
studies, a population survey, or expert opinion). The
second parameter is the proportion of the population with
the characteristic, denoted by fT. The prevalence in the
subpopulations is related to the population prevalence by
the weighted average P = fTPT + (1 � fT)PO.

2.2. A points concept for targeted sampling

The concept of using a points-based system for
demonstrating disease freedom is an intuitive approach
for targeted sampling (Cannon, 2002). This approach
assigns a relative value to each sample. Sample elements
drawn from a subpopulation that has a higher prevalence
receive a higher point value than randomly selected
animals drawn from the general population or from a
non-targeted population (i.e., samples that are more
beneficial in the search for disease are more valuable). The
number of points ascribed to an individual element equals
the relative value of that sample element in comparison to
a randomly sampled element from the general popula-
tion. For example, if a sample size of n = 300 was required
to detect one or more diseased individuals in a random
sample from the general population, but a targeted
sample only requires nT = 100 animals drawn from the
targeted subpopulation to detect one or more diseased
individuals, then the number of points (g) ascribed to
each animal in the targeted sample is 3. Using this
approach, the point value assigned to a targeted animal is
such that

n ¼ gnT :

Unlike a traditional sample design, which requires
that every animal in the population has a nonzero
probability of being selected, targeted sampling can be
designed to focus solely on the targeted subpopula-
tion(s). To make inferences about the general population,
however, the point value must link inferences drawn
from the targeted subpopulation(s) back to the general
population.

If the goal is to estimate the prevalence of the disease in
the general population from a targeted sample drawn from
only a single subpopulation, then a value for g must be
defined such that the estimator for prevalence, based on a
sample drawn from the targeted subpopulation, will be
equivalent to a simple random sample (SRS) from the
general population. Following this logic

P̂ ¼ number of diseased animals in a SRS sample

n

¼ number of diseased animals in a targeted sample

gnT
¼ P̂T

g
:

This expression leads to the conclusion that the number
of points to ascribe to a targeted animal relates the
prevalence in the targeted subpopulation to the prevalence
in the general population, with

g ¼ PT

P
:

The same logic for deriving points can also be applied to
the problem of disease detection. In this application, the
definition of g is equivalent to solving the formula

1� ð1� PÞn ¼ 1� ð1� PTÞnT ¼ 1� ð1� PTÞn=g :

This formula leads to the solution g = ln(1 � PT)/
ln(1 � P), with

lnð1� PTÞ
lnð1� PÞ 6¼

PT

P
:

Prattley et al. (2007a,b) provide a different formulation for
g, while a fourth relationship can be derived if the goal is to
design a survey where the precision of the estimated
prevalence from a simple random sample matches that of a
targeted sample.

At first glance this is a troublesome conclusion until one
realizes that all of the interpretations of g are approxi-
mately equal for low-prevalence surveillance applications
because

g ¼ lnð1� PTÞ
lnð1� PÞ �

PT

P
;

whenever both PT and P are close to 0. The ratio of these
two formulations of g over a wide range of PT and P values
is given in Fig. 1, where substantial differences are
apparent. However, the agreement between the two
definitions of g is good (i.e., the ratio is close to one)



Fig. 2. Agreement between the point values (g) for a sampling for

detection application and the point values for prevalence estimation

when all possible prevalence levels are restricted to being less than 0.1.

The flat surface indicates close agreement in point values, regardless of

the application.
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when the range of PT and P values are limited to being less
than 0.1 (Fig. 2).

For the remainder of this study, the point value per
sample will be g = PT/P. The motivation for using this
formula is that points per sample can be explicitly related
to epidemiologic parameters that describe the disease.
Specifically, the number of points to ascribe to each
targeted animal is given by,

g ¼ PT

P
¼ PT=PO

ð f T PT þ f OPOÞ=PO
¼ RR

f T RRþ ð1� f TÞ
:

A similar formula applies if multiple targeted sub-
populations were considered. Suppose characteristics exist
to divide the population into L � 1 subpopulations, with
the Lth subpopulation comprising those animals that did
not exhibit any of the characteristics of interest (i.e.,
apparently healthy animals). In this case f Tl

and RRTl
are

required for each l = 1,. . .L � 1 targeted subpopulations
and the points per targeted sample are given by

g l ¼
PTl

P
¼

RRTl
238

f Tl
RRTl

þ ð1� f Tl
Þ

for l = 1,. . .L � 1. Furthermore, if multiple targeted sub-
populations are available for sampling, then the optimal
allocation of sampling resources is to preferentially select
animals from the subpopulation(s) with the highest point
value. If the cost of sampling increases with accumulated
numbers of samples (e.g., the cost of locating particular
targeted samples becomes more difficult after collecting
some number of samples), however, it may be more cost-
effective to select samples from targeted subpopulations
with lower values of gl.

2.3. Points and sampling from the non-targeted

subpopulation

Given the prevalence in the general population (P), the
effect of dividing the population into the targeted and non-
targeted subpopulations is to increase the prevalence in
the targeted subpopulation and decrease the prevalence in
the non-targeted subpopulation. This implies that drawing
a sample from the non-targeted subpopulation is less
effective for finding disease than drawing a sample of equal
size from the general population. The point value
attributed to each sampled animal from the non-targeted
portion of the population is

gO ¼
PO

P
¼ 1

f T RRþ ð1� f TÞ
:

The point value assigned to each sample from the non-
targeted population is less than 1 given that RR is the risk
ratio for the targeted population given in Eq. (2).

The number of points ascribed to animals that are
apparently healthy, regardless of the number of different
subpopulation, is given by

gO ¼
1�

PL�1
l¼1 f Tl

g l

1�
PL�1

l¼1 f Tl

;

where L denotes the total number of subpopulations and
l = L is the subpopulation of animals that have do not
exhibit any of the characteristics of interest (i.e., the
subpopulation of apparently healthy animals). Note that
this equation reflects the constraint that

P ¼
XL

l¼1

f lPl:

2.4. Combining negative surveillance results from multiple

subpopulations

A framework for combining results is necessary when
samples are collected from multiple subpopulations. The
term surveillance sensitivity is sometimes used to describe
the probability of detecting disease in a population. Eq. (1)
is a special case of the more general formula for
determining the sensitivity achieved from combining the
negative surveillance sampling results from multiple
sources (Cannon, 2002). The general formula is
Se ¼ 1�

QL
l¼1ð1� SelÞ, where each of the Sel value is the

confidence level achieved from sampling subpopulation l,
with Sel ¼ 1� ð1� PTl

Þnl ¼ 1� ð1� g lPÞ
nl , where nl is the

number of samples from subpopulation l and P is the
design prevalence.

3. Estimation of prevalence in the targeted sampling
framework

The presentation thus far has focused on demonstrat-
ing freedom from disease. The logical extension of
targeted sampling is the estimation of prevalence. The
estimator of prevalence for a simple random sample of
size n is given by

P̂SRS ¼
Pn

i¼1 di

n
;

where the indicator variable is defined as

di ¼
1 if animal i is diseased
0 otherwise

:

�
Suppose that the entire sample is allocated to a single

subpopulation made up of animals that exhibit character-
istic T. If the risk ratio and fraction of the population are
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known values, and a random sample of size nT is drawn
from this subpopulation, then the targeted sampling
estimator of prevalence is given by

P̂Targ ¼
PnT

i¼1 di

gnT
:

Two approaches can be used to show that this estimator
is unbiased. The first approach follows methodology
typically found in survey sampling (e.g., Sarndal et al.,
1992), which yields

E½P̂Targ � ¼ E

PnT

i¼1 di

gnT

" #

¼ P

PT

PnT

i¼1 E½di�
nT

¼ P

PT

nT PT

nT

¼ P

This approach shows that P̂Targ satisfies the conditions for
design unbiasedness, although the sample design is not
measurable (Sarndal et al., 1992, p. 33).

The second approach is model-based and assumes that
the number of diseased animals observed in the sample is
X ¼

PnT
i¼1 di and is distributed as a binomial random

variable (i.e., X � Binomial (nT, PT)). The expected value of
the estimator is

E½P̂Targ � ¼
E½X�
gnT

¼ P

nT PT
E½X�

¼ P

nT PT
nT PT

¼ P

Regardless of the method of proof, the estimator is
unbiased. However, note that prevalence is assumed to be a
known value through g, and nT is not necessarily an integer.

Assuming the population is large in relation to the
sample size, the variance of the estimator is given by

Var½P̂Targ � ¼
Pð1� PÞ

gnT
:

The SRS and targeted estimators for variance are
approximately equal (i.e., Var½P̂SRS� ¼ Pð1� PÞ=n � Pð1� PÞ
=gnT ). Thus, both the probability of detection and the
variance of the targeted sampling estimator will be
approximately equal to those derived from the equivalent
simple random sample. This result ignores the minor
differences in the definition of g values and the need for the
sample sizes to be integer values.

4. Estimation with uncertainty in the risk ratio and
population fraction

The estimators for targeted sampling assume that the
relationship between the design prevalence and the pre-
valence in each subpopulation are known values. In practice,
however, RR and fT will seldom (if ever) be known with
certainty. Unlike many survey applications, where auxiliary
information is either enumerated in the sampling frame or
collected as part of a multi-stage or multi-phase sample
design, the most common sources of risk ratio estimates are
published studies (e.g., Wilesmith et al., 1992; Baylis et al.,
2002), while the fraction of the population exhibiting the
characteristic may come from an area or national survey that
provides demographic information (e.g., NAHMS, 1997,
2003). In the absence of empirical data, uncertainty
information is often provided by expert opinion. Regardless
of the source of epidemiologic information, probability
distributions that describe the risk ratio and fraction of the
population exhibiting the characteristic are required.

Suppose the random variables fRR and f̃T can be described
using an appropriate probability distribution, with possible
examples being fRR�Gammaðm;s2Þ; f̃T �Betaða; bÞ. The
distributions of possible point values and subpopulation

prevalence values are derived from g̃ ¼ eRR

f̃T
eRRþð1� f̃T Þ

, and

P̃T ¼ P eRR

f̃T
eRRþð1� f̃T Þ

.

The distribution describing the point values contains
both a product and ratio of random quantities. This
introduces two concerns. First, it is unlikely that a
convenient closed-form solution will exist to describe
the distribution of g̃; the solution that we present later
uses Monte Carlo methods to approximate the distribu-
tion. The second concern is that the estimator, g̃ , will be
biased, as is the case with any ratio of random variables
that are not linearly related (Mood et al., 1974, p. 181).

4.1. Estimation of prevalence with uncertain point values

A consequence of uncertainty in the point values is a
bias in the estimated prevalence. The approximate bias can
be derived from a Taylor’s series approximation (Mood
et al., 1974) and is found as follows

E½P̂fTarg
� ¼ E

PnT

i¼1 di

g̃nT

" #

¼ 1

nT
E

PnT

i¼1 di

g̃

" #

� 1

nT

�
E½
PnT

i¼1 di�
E½g̃� �Cov½

PnT

i¼1 di; g̃�
E½g̃�2

þ
E½
PnT

i¼1 di�
E½g̃�3

Var½g̃�
�
;

where the number of diseased animals is distributed asPnT
i¼1 di�BinomialðnT ; PTÞ.The numbers of diseased ani-

mals
PnT

i¼1 di

� �
and the estimated points to apply to the

sample are uncorrelated in applications where the risk
ratio and subpopulation fractions are estimated from
independent sources. Therefore, the expected value
reduces to E½P̂fTarg

� � P þ P=E g̃½ �2Var½g̃�. The bias term
P=ðE g̃½ �2ÞVar½g̃� is positive in all applications so the
population prevalence will tend to be overestimated.

4.2. Adjusting sample size for disease detection with

uncertain point values

Uncertainty in the point values affects the determina-
tion of the necessary sample size to demonstrate freedom
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from disease. Note that in this application the prevalence
in the targeted subpopulation is now assumed to be a
random quantity that is a function of the design
prevalence, fRR, and f̃T . The question then becomes; How
must the sample size be adjusted if prevalence in the
targeted population is a random variable describing
uncertainty about its true value?

This uncertainty requires that sample size be assessed
with respect to the possible range of P̃T . The probability
density function will be denoted by f P̃T

ðP̃TÞ. To detect
disease at the specified design prevalence, a 0–1 random
variable X is defined as

X�Bernoullið p ¼ 1� ð1� P̃TÞ
nT Þ;

which implies that

X ¼ 0 when no diseased animals are found:
1 otherwise:

�

If the true prevalence in the targeted population were
known, then nT is selected so that pðdetection in a targeted
sample of size nTÞ ¼ pðX ¼ 1Þ ¼ 1� ð1� PTÞnT ¼ 1� a:

Given uncertainty about P̃T , the probability of detection
is found by using the conditional probability, so

pðX ¼ 1Þ ¼ 1� a ¼
Z 1
�1

pðX ¼ 1jP̃T ¼ PTÞ f P̃T
ðPTÞdP̃T

1� a ¼
Z 1

0
ð1� ð1� PTÞnT Þ f P̃T

ðPTÞdP̃T :

The appropriate sample size is found by solving the
integral for nT, however, as mentioned previously, it is
unlikely that f P̃T

will have a closed-form solution. A
solution is to use Monte Carlo methods to generate
instances of the integrand that can be averaged, then the
average is solved (using a search algorithm) for nT (i.e.,
choose nT so that

PJ
j¼1ð1� ð1� P̃T j

ÞnT Þ=J
� 	

� 1� a where
P̃T j

is a random draw from the prevalence distribution and J

is the number of samples of the Monte Carlo model for P̃T ).

4.3. Estimating population prevalence from a targeted

sample

After nT is determined and a targeted sample is
collected, the process for estimating the population
prevalence (and its standard error) remains. In this case,
estimation is conditional on Y ¼

PnT
i¼1 di and the distribu-

tion of g̃ values. The expected value of the prevalence
estimator is given by

E½P̂fTarg
� ¼ Eg ½EY ½P̂fTarg

��

¼ Eg EY
Y

nT g̃

� �� �
¼ Eg

nT PT

nT g̃

� �
¼ PT � Eg

1

g̃

� �
¼ PT �

R1
0

1

g̃
f gðg̃Þdg̃

in the case where uncertainty about g̃ is represented by a
continuous distribution. In most practical applications, the
distribution of g̃ will be estimated using Monte Carlo
methods so that Egð1=g̃Þ will simply be the mean of a
simulated distribution for 1=g̃.
The variance of the population prevalence is given by

Var½P̂fTarg
� ¼ Eg ½VarY ½P̂fTarg

�� þ Varg ½EY ½P̂fTarg
��

¼ Eg VarY
Y

nT g̃

� �� �
þ Varg EY

Y

nT g̃

� �� �
¼ Eg

nT PTð1� PTÞ
nT

2g̃2

" #
þ Varg

nT PT

nT g̃

� �

¼ PTð1� PTÞ
nT

E
1

g̃2

" #
þ P2

T Var
1

g̃

� �
Monte Carlo methods are used to determine the

necessary moments of 1=g̃2 and 1=g̃ .
Substituting the sample-based estimates for PT and

Monte Carlo based approximations for E½1=g̃2� andVar½1=g̃�
provides a sample-based variance estimator. The standard
error of P̂fTarg

is the square root of its variance.
For low-prevalence applications, the Wald confidence

interval, given by ðP̂	 za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
var½P̂�

q
Þ, has an achieved

coverage rate that is generally much lower than the
nominal (1 � a/2) value. The score confidence interval
(Agresti and Coull, 1998), is recommended for this
application, with the boundaries of the confidence interval
given by

P̂þ
z2
a=2

2n
	 za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½var½P̂� þ z2

a=2=ð4nÞ�=n
q� �" #

=ð1þ z2
a=2=nÞ:

Nanthakumar and Selvavel (2004) summarize the
performance of other confidence interval techniques for
low-prevalence applications.

4.4. Quantifying the impact of bias in point values

Information regarding the epidemiology of the disease
may come from studies conducted on different popula-
tions, or it may be based on expert opinion, particularly
when the disease in question is not known to exist in the
population. A concern in these situations is the possibility
for the resulting estimated distribution for g̃ to be biased
(Garthwaite et al., 2005). A solution that is often employed
for disease detection applications is to use conservative
estimates of the epidemiologic parameters. This reduces
the point values assigned to animals exhibiting the
characteristic and increases the point value assigned to
apparently healthy animals. This approach leads to
conservative assumptions about the prevalence in the
targeted population and results in a greater level of
confidence than the stated (1 � a) level for disease
detection applications.

Understanding the effect of bias on the prevalence
estimator is more difficult because the effect of bias on the
resulting inference needs to be evaluated by considering
the magnitude of the bias with respect to the variance of
the prevalence estimator. The bias ratio is a useful measure
of the performance of a biased estimator (Sarndal et al.,
1992). It is given by

BRðP̂fTarg
Þ ¼ BðP̂fTarg

Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðP̂fTarg

Þ
r���� ����;

where BðP̂fTarg
Þ is bias of the estimator. The bias ratio can be

used to estimate the effect of bias on the coverage



Table 1

Parameters used in the construction of the low- and high-prevalence populations.

Population P PT PO fT RR fRR f̃T

Low prevalence 6.35 � 10�6 5.0 � 10�5 5.0 � l0�6 0.03 10 Normal (10,2) where RR > 0.1 Beta ð5;161:6̄Þ
High prevalence 0.0019 0.01 0.001 0.10 10 Normal (10,2) where RR > 0.1 Beta (5,45)
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probability of the confidence interval of P̂fTarg
; where

coverage probability measures the fraction of repeated
samples whose estimated confidence intervals will overlap
the true population prevalence. Under a large sample
normality assumption, bias ratios of less than 0.1 indicate
that bias is of little practical concern because the achieved
coverage of a 95% confidence interval will still be very close
to the nominal value (e.g., 94.9% in the case of a 10% bias).
Even a bias ratio of 0.5 can be considered acceptable
because at this level the coverage probability of a 95%
confidence interval may still be greater than 92% (Sarndal
et al., 1992).

Suppose surveillance is planned to detect disease with
95% confidence at the design prevalence P. Assume that
only two subpopulations exist, all sampled animals will be
selected from the subpopulation of animals that exhibit
the characteristic T, and ignore the effect of uncertainty in
the point value. In this situation, the bias ratio can be
approximated by

BRðP̂TargÞ �
ffiffiffi
3
p
ðP̂Targ � PÞ

P
;

which is just the bias expressed as a proportion
multiplied by

ffiffiffi
3
p

. Substituting in the appropriate
values of PT, P and g provides an approximation to the
upper and lower bounds for g values so that the
bias ratio is less than 0.5. These bounds are given

byg low;high ¼ g 2
ffiffi
3
p

ð2
ffiffi
3
p
	1Þ ¼ ð0:78g;1:41gÞ

This admittedly crude approximation suggests that a
bias on the order of 20–40% in the point value will have
Fig. 3. Monte Carlo based approximations of the distribution describing the unce

risk ratio ðfRRÞ, and the distribution of points for each targeted sample element
only a minimal influence on the estimator of prevalence in
a targeted sampling application.

5. Simulation study

A simulation study was conducted to compare targeted
sampling (Targ) with simple random sampling without
replacement (SRS). The simulation was written in the R
language (R, 2005). The simulation study was carried out
on two artificial populations, with the first mimicking a
surveillance application where the prevalence of the
disease was high (i.e., �1 per 500) while the second
population mimics a very low-prevalence application (<1
per 100,000). To facilitate comparisons, the design pre-
valence for disease detection was set to true disease
prevalence in the populations (i.e., p(1 or more diseased
animals are found in a sample) = 0.95).

To demonstrate the effect of estimated g̃ andP̃T values,
the risk ratio was described as fRR�Normalðm;s2Þ, where
only fRR values greater than 0.1 are considered, while the
distribution for the fraction of the population exhibiting
the characteristic was f̃T �Betaða;bÞ. A summary of the
parameters defining each population is given in Table 1
and the distributions for the low prevalence example are
given in Fig. 3. These two examples are used to illustrate
the effect of the multiple sources of bias in the estimators
associated with the various approximations.

Summary statistics for the distribution of g̃ are
provided in Table 2. The difference in the points values
for prevalence estimation and detection was as large as
2.8% for the high-prevalence population. The discrepancy
rtainty in the fraction of the population exhibiting the characteristic ð f̃T Þ,
(g).



Table 3

Metrics for comparing the performance of simple random sampling against the two versions of targeted sampling. The sample sizes are based on the size

required to ensure a probability of 0.95 that at least one infected animal would be found in each sample. The low-prevalence data set is representative of

surveillance application for extremely rare disease, such as bovine spongiform encephalopathy in the U.S. The high-prevalence population is representative

of the OIE standards for surveillance such as bovine brucellosis.

Population Sampling

Method

Sample

Size n*

Confidence in

detection Conf

Percent Bias of

prevalence estimator BðP̂
Þ
Percent Bias of variance

estimator Bðvar½P̂
�Þ
Conf. Interval

coverage percentage

Bias ratio

Low prevalence SRS 471,767 95.02 0.03 0.01 96.7 <0.00

Targ 59,914 94.98 �0.04 0.00 96.7 <0.00gTarg 63,102 95.01 3.48 3.25 95.6 0.05

High Prevalence SRS 1575 95.00 0.02 0.03 96.7 <0.00

Targ 299 95.06 �0.05 0.92 96.7 <0.00gTarg 313 95.03 2.23 3.87 95.4 0.04

SRS = simple random sample; Targ = targeted sampling with known RR and fT; gTarg ¼ targeted sampling with uncertain epidemiological

parameters fRR and f̃T .

Table 2

Summary and descriptive statistics for the point values for the two populations.

Population g = ln(1 � PT)/ln(1 � P)

Detection-based

point value

g = PT/P Prevalence-

based point value

Monte Carlo

approximated

value for E½g̃�

Monte Carlo based

standard errorffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½g̃�

p Percent bias in

g̃ defined by

100ðE½g̃� � gÞ=g

Low prevalence 7.8742 7.8740 7.886 1.45 0.16

High prevalence 5.2846 5.2632 5.411 1.48 2.78
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between the two definitions of g is inconsequential for the
low-prevalence population.

The sample sizes used in the simulation study were
based on a surveillance application where the goal was the
detection of disease with an a-level of 0.05. Sample sizes
across the two populations and the three sampling
methods ranged from 299 to 471,767 (Table 3).

The purpose of the simulation study is to illustrate the
potential efficiency of targeted sampling to detect disease
and to estimate prevalence. The simulation drew
J = 2,000,000 realizations from the population using SRS
and targeted sampling. The first metric of interest was the
percentage of realizations that contained at least one
infected animal, which is given by

Con f 
 ¼

Number of realizations with at least

one infected animal
J

;

where 
 ¼ SRS; Targ; gTarg indicates the method of sampling
and estimation (i.e., Targ assumes RR and fT are known with
certainty while gTarg assumes these quantities are uncer-
tain).

For each type of sampling, the appropriate estimators for
prevalence and variance of the prevalence estimator were
calculated. The mean of the estimates was used to assess the
potential relative bias, B(�), of each estimator using

BðP̂Þ ¼ 100�
PJ

j¼1 P̂ j=N
� 	

� P

P
:

The relative bias of the sample-based variance estima-
tor was assessed using

Bðvar½P̂�Þ ¼ 100�
PJ

j¼1 var½P̂ j�=N
� 	

� Var½P̂�

Var½P̂�
;

where Var½P̂� was the variance of the estimator across the
2,000,000 realizations.
The bias ratio and the achieved confidence interval
coverage rate were calculated in order facilitate compar-
isons between the different sampling methods and
estimators.

6. Simulation results

The results of the simulation study are summarized in
Table 3. As expected, one or more infected animals were
found in approximately 95% of all samples, regardless of
the sampling method, though the number of samples
needed to achieve this level of confidence was between 5
and 7 times larger when simple random sampling was
used. The simulation results illustrate the unbiasedness of
the SRS and Targ estimators of prevalence. On the other

hand, the estimator of prevalence, P̂fTarg
, that accounts for

the uncertainty in our knowledge of the epidemiology of
the disease, overestimates the true prevalence by between
2.2 (high-prevalence situation) and 3.5% (low-prevalence
situation). The bias ratio, BRðP̂fTarg

Þ, was less than or equal to
0.05 for both populations. This magnitude of the bias ratio
indicates that bias will have little effect on the coverage
probability of the associated confidence interval. The
estimated bias, based on the Taylor’s series approximation

of the expected value (i.e., E½P̂fTarg
� � P þ P=ðE g̃½ �2ÞVar½g̃�),

was a 2.1 and 4.0% overestimate of the true prevalence, for
the high and low-prevalence population, respectively.
These values are similar to the percent bias in the
simulation study (i.e., a 2.2 and 3.5% over-estimate of
true prevalence), which suggests that the assumptions
used with the Taylor’s series approximation are reasonable
and that the targeted sampling estimator will consistently
over-estimate the true prevalence. As expected, there was
no noticeable bias in the sample-based variance estimators
var½P̂SRS� and var½P̂Targ �, while the bias in var½P̂fTarg

� was 3.25
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and.3.9% for the low and high-prevalence populations,
respectively.

The achieved coverage rate for the confidence intervals
based on the score method (Agresti and Coull, 1998)
consistently exceed the nominal 95%, with the coverage
rate for the targeted sampling estimator consistently being
closest to the nominal value. In contrast, the coverage rates
for the Wald-based confidence intervals ranged from only
80–88%, regardless of the population, sampling method,
and estimator (results not presented).

7. Conclusions

Targeted sampling is appropriate for surveillance appli-
cations where the primary objective is the detection of
disease, with the estimation of prevalence being necessary
when disease is found. The optimal allocation of samples is
to draw all samples from the subpopulation with the highest
point value, regardless of whether interest is in detection or
estimating prevalence. If the proportion of the population
with the characteristic is small and its risk ratio is high,
inferences based on targeted sampling will either be very
precise in comparison to those derived from a simple
random sample of equal size, or a much smaller total sample
size will produce estimates of equivalent precision.

The drawbacks associated with targeted sampling are
both theoretical and practical. The need to acquire accurate
epidemiologic information, particularly for rare diseases, is
probably the most challenging aspect of targeted surveil-
lance. The theoretical concern is the complexity associated
with the need to incorporate the estimation of point values
and complexity of determining appropriate variance
estimators and sample sizes. Unlike many survey sampling
applications, there are few simple formulas and the
solutions may depend on search algorithms and Monte
Carlo methods. While none of the estimators are unbiased
when the point values are unknown, the biases associated
with the approximations are small enough to be of little
practical concern.

The reliance on estimated values and models would lead
some to argue that targeted surveillance is not an
appropriate approach. Never the less, the use of targeted
sampling cannot be avoided in applications where the
population (or design) prevalence is low and the collection
of samples from apparently healthy animals is difficult,
impractical, or inappropriate (e.g., the collection of samples
from healthy animals when testing for bovine spongiform
encephalopathy). Another point to consider is that many
surveillance samples are already a form of targeted
sampling. For example, surveillance samples collected at
slaughter for diseases such as Brucella abortus are a targeted
sample because breeding cows that abort also have a higher
probability of being culled and sent to slaughter. Ignoring
the targeted nature of sampling for this application leads to
over-estimating prevalence because these samples should
be assigned a point value larger than 1.

This study describes animal-level targeted sampling,
but the results are also applicable to inferences at the herd-
and zone-level using modifications of the results provided
by Cannon (2002) for combining surveillance information.
Extensions to two-stage surveillance designs are also
possible by generalizing the results of Cameron and
Baldock (1998). However, the complexity of applications
that include both animal- and herd-level risk factors is
beyond the scope of this study.

In conclusion, targeted sampling is appropriate for low-
prevalence surveillance applications. In these applications,
targeted sampling allows for substantial reductions in the
required sample size. Nevertheless, it is imperative that
uncertainty in the estimated point values be incorporated
into the design of targeted surveillance, as well as in the
analysis of the resulting sample.
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